T = 295 (2) K $0.32 \times 0.30 \times 0.27$ mm

 $R_{\rm int} = 0.020$

4393 measured reflections

1287 independent reflections

1264 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1,3-Propanediamine- $\kappa^2 N, N'$)bis(thiocyanato-*kN*)copper(II)

Zhong-Lu You^a* and Seik Weng Ng^b

^aDepartment of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, Kuala Lumpur 50603, Malaysia Correspondence e-mail: youzhonglu@yahoo.com.cn

Received 20 July 2007; accepted 10 August 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean $\sigma(N-C) = 0.005$ Å; disorder in main residue; R factor = 0.023; wR factor = 0.066; data-to-parameter ratio = 13.3.

The title compound, $[Cu(NCS)_2(C_3H_{10}N_2)]$, synthesized from the reaction of propane-1,3-diamine, ammonium thiocyanate and copper acetate monohydrate in anhydrous methanol solution, is a mononuclear copper(II) complex which lies on a mirror plane. The Cu^{II} ion is four-coordinated by the two N atoms of the propane-1,3-diamine ligand and by two N atoms from two thiocyanate ligands, forming a square-planar geometry. The propane-1,3-diamine ligand is disordered over four orientations, two symmetry-independent and two related by mirror symmetry, each with an occupancy of 0.25. The refinement results indicate inversion twinning.

Related literature

For related structures, see: Ye & You (2007); You et al. (2004); You, Han et al. (2006); You, Wang & Han (2006); You & Niu (2006); You & Zhu (2004).

Experimental

Crystal data $[Cu(NCS)_2(C_3H_{10}N_2)]$ $M_r = 253.83$ Orthorhombic, Cmc21 a = 5.9505 (17) Å

b = 20.478 (6) Å c = 8.475 (2) Å V = 1032.7 (5) Å³ Z = 4

Mo $K\alpha$ radiation
$\mu = 2.47 \text{ mm}^{-1}$

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\rm min}=0.505,\;T_{\rm max}=0.555$ (expected range = 0.467 - 0.513)

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.023$	H-atom parameters constrained
$wR(F^2) = 0.066$	$\Delta \rho_{\rm max} = 0.34 \text{ e } \text{\AA}^{-3}$
S = 1.04	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
1287 reflections	Absolute structure: Flack (1983),
97 parameters	593 Friedel pairs
63 restraints	Flack parameter: 0.50 (2)

Table 1 Selected geometric parameters (Å, °).

Cu1-N4	1.963 (3)	Cu1-N2	1.999 (3)
Cu1-N3	1.984 (3)	Cu1-N1	2.001 (3)
N4-Cu1-N3	89.57 (16)	N4-Cu1-N1	88.87 (16)
N4-Cu1-N2	178.10 (16)	N3-Cu1-N1	178.44 (16)
N3-Cu1-N2	88.53 (15)	N2-Cu1-N1	93.03 (14)

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL.

This work was supported by the Scientific Research Foundation of the Education Office of Liaoning Province (project No. 20060495). We also thank the University of Malaya for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2424).

References

- Bruker (1998). SMART (Version 5.628) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997a). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Ye, L.-J. & You, Z. . (2007). Acta Cryst. E63, m1837.
- You, Z.-L., Chen, B., Zhu, H.-L. & Liu, W.-S. (2004). Acta Cryst. E60, m884m886
- You, Z.-L., Han, X., Wang, J. & Niu, S.-Y. (2006). Acta Cryst. E62, m851-m853. You, Z.-L. & Niu, S.-Y. (2006). Acta Cryst. E62, m922-m924.
- You, Z.-L., Wang, J. & Han, X. (2006). Acta Cryst. E62, m860-m861.
- You, Z.-L. & Zhu, H.-L. (2004). Acta Cryst. E60, m1079-m1080.

Acta Cryst. (2007). E63, m2347

supplementary materials

Acta Cryst. (2007). E63, m2347 [doi:10.1107/S1600536807039645]

(1,3-Propanediamine- $\kappa^2 N, N'$)bis(thiocyanato- κN)copper(II)

Z.-L. You and S. W. Ng

Comment

Recently, we have reported the crystal structures of a few Schiff base metal complexes (You, Han *et al.*, 2006; You, Wang & Han, 2006; You & Niu, 2006). As an extension of the work on the structural characterization of such complexes, the title copper(II) complex is reported here.

The complex is a mononuclear copper(II) complex, which lies on a mirror plane. The Cu^{II} ion is four-coordinated by two N atoms of the propane-1,3-diamine ligand and by two N atoms from two thiocyanate ligands, forming a square planar geometry (Table 1). The coordination bond lengths are within normal ranges and comparable to the values observed in other copper(II) complexes reported by us recently (You & Zhu, 2004; You *et al.*, 2004; Ye & You, 2007).

Experimental

All the reagents used were of commercial grade and used without further purification. Propane-1,3-diamine (0.1 mmol, 7.4 mg), ammonium thiocyanate (0.2 mmol, 15.2 mg) and copper acetate monohydrate (0.1 mmol, 20.0 mg) were mixed in an anhydrous methanol solution (10 ml). The mixture was stirred at room temperature for 30 min to give a clear blue solution. After keeping the solution in air for a week, blue block-shaped crystals were formed.

Refinement

All non-hydrogen atoms except the C atoms of the 1,3-propanediamine ligand lie on a mirror plane. The 1,3-propanediamine ligand is disordered over four orientations, two symmetry independent and two related by mirror symmetry, each with an occupancy of 0.25. The N—C bond distances were restrained to 1.45 (1) Å and the C–C distances to 1.54 (1) Å. The 1,3-related N…C distances were restrained to 2.35 (1) Å and the 1,3-related C…C distances to 2.51 (1) Å. Additionally, the displacement parameters of the primed atoms were set to those of the unprimed ones; the anisotropic displacement parameters of the entire ligand were restrained to be nearly isotropic. C– and N-bound H atoms were generated geometrically (C–H = 0.97 and N–H = 0.86 Å), and were included in the refinement in the riding model approximation. The refined Flack parameter of 0.50 (2) indicates that the crystal is an inversion twin.

Figures

Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. Only one of the four disorder components is shown.

(1,3-Propanediamine- $\kappa^2 N$, N') bis(thiocyanato- κN) \ copper(II)

Crystal data

$[Cu(NCS)_2(C_3H_{10}N_2)]$	$F_{000} = 516$
$M_r = 253.83$	$D_{\rm x} = 1.633 {\rm ~Mg~m}^{-3}$
Orthorhombic, Cmc2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: C 2c -2	Cell parameters from 4527 reflections
a = 5.9505 (17) Å	$\theta = 2.7 - 27.5^{\circ}$
<i>b</i> = 20.478 (6) Å	$\mu = 2.47 \text{ mm}^{-1}$
c = 8.475 (2) Å	T = 295 (2) K
$V = 1032.7 (5) \text{ Å}^3$	Block, blue
Z = 4	$0.32 \times 0.30 \times 0.27 \text{ mm}$

Data collection

reflections with $I > 2-(D)$
- reflections with $I \ge 26(I)$
= 0.020
= 27.5°
= 2.0°
-7→7
-26→26
11→11

Refinement

Refinement on F^2 Hydrogen site location: inferred from neighbouring
sitesLeast-squares matrix: fullH-atom parameters constrained $R[F^2 > 2\sigma(F^2)] = 0.023$ $w = 1/[\sigma^2(F_o^2) + (0.0479P)^2 + 0.1407P]$
where $P = (F_o^2 + 2F_c^2)/3$ $wR(F^2) = 0.066$ $(\Delta/\sigma)_{max} < 0.001$

<i>S</i> = 1.04	$\Delta \rho_{max} = 0.34 \text{ e} \text{ Å}^{-3}$
1287 reflections	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
97 parameters	Extinction correction: SHELXL97, Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(2 θ)] ^{-1/4}
63 restraints	Extinction coefficient: 0.010 (1)
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 593 Friedel pairs
Secondary atom site location: difference Fourier map	Flack parameter: 0.50 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
Cu1	0.5000	0.701275 (15)	0.5000	0.04011 (15)	
S1	0.5000	0.80305 (4)	0.0035 (2)	0.0479 (2)	
S2	0.5000	0.92135 (5)	0.6725 (2)	0.0766 (4)	
N3	0.5000	0.72640 (19)	0.2739 (4)	0.0501 (7)	
N4	0.5000	0.79405 (14)	0.5584 (5)	0.0516 (8)	
C4	0.5000	0.75676 (17)	0.1619 (4)	0.0404 (7)	
C5	0.5000	0.84648 (18)	0.6040 (5)	0.0481 (8)	
N1	0.5000	0.67852 (16)	0.7296 (4)	0.0495 (7)	
H11	0.6242	0.6940	0.7656	0.059*	0.25
H12	0.3953	0.7021	0.7703	0.059*	0.25
H13	0.5656	0.7100	0.7786	0.059*	0.25
H14	0.3623	0.6783	0.7603	0.059*	0.25
N2	0.5000	0.60769 (14)	0.4330 (4)	0.0529 (9)	
H21	0.3721	0.6005	0.3890	0.064*	0.25
H22	0.5999	0.6040	0.3603	0.064*	0.25
H23	0.3616	0.5964	0.4224	0.064*	0.25
H24	0.5587	0.6065	0.3403	0.064*	0.25
C1	0.477 (2)	0.6158 (3)	0.8026 (9)	0.052 (2)	0.25
H1A	0.3715	0.6191	0.8896	0.063*	0.25
H1B	0.6209	0.6025	0.8453	0.063*	0.25
C2	0.396 (2)	0.5649 (4)	0.6890 (11)	0.072 (3)	0.25
H2A	0.2458	0.5770	0.6544	0.086*	0.25
H2B	0.3826	0.5239	0.7453	0.086*	0.25
C3	0.539 (3)	0.5537 (6)	0.5448 (12)	0.064 (3)	0.25
H3A	0.6960	0.5521	0.5743	0.077*	0.25
H3B	0.5000	0.5125	0.4959	0.077*	0.50
C1'	0.6032 (17)	0.6171 (4)	0.7849 (11)	0.052 (2)	0.25
H1'1	0.5751	0.6111	0.8967	0.063*	0.25
H1'2	0.7644	0.6181	0.7680	0.063*	0.25

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C2'	0.497 (4)	0.5609 (4)	0.690	03 (10)	0.072 (3)	0.25
H2'1	0.3377	0.5690	0.676	57	0.086*	0.25
H2'2	0.5147	0.5202	0.747	76	0.086*	0.25
C3'	0.611 (3)	0.5552 (6)	0.527	70 (12)	0.064 (3)	0.25
H3'1	0.7717	0.5626	0.534	18	0.077*	0.25
H3'2	0.5848	0.5126	0.480)7	0.077*	0.25
		2				
Atomic displa	cement parameter	$s(A^2)$				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0494 (2)	0.0383 (2)	0.0327 (2)	0.000	0.000	0.00364 (17)
S1	0.0423 (4)	0.0641 (5)	0.0374 (4)	0.000	0.000	0.0121 (5)
S2	0.0979 (8)	0.0411 (5)	0.0909 (9)	0.000	0.000	-0.0032 (5)
N3	0.0439 (15)	0.065 (2)	0.0419 (17)	0.000	0.000	0.0092 (15)
N4	0.0581 (19)	0.0427 (15)	0.0541 (17)	0.000	0.000	0.0009 (12)
C4	0.0317 (13)	0.0519 (19)	0.0375 (16)	0.000	0.000	0.0009 (14)
C5	0.0492 (16)	0.0446 (17)	0.0506 (19)	0.000	0.000	0.0086 (16)
N1	0.0533 (16)	0.0577 (19)	0.0374 (16)	0.000 (11)	0.000 (11)	0.0062 (14)
N2	0.068 (2)	0.0428 (16)	0.0475 (17)	-0.007 (7)	-0.017 (6)	-0.0033 (15)
C1	0.059 (7)	0.055 (3)	0.042 (3)	-0.002 (4)	0.000 (4)	0.012 (2)
C2	0.077 (7)	0.062 (3)	0.077 (4)	-0.025 (5)	-0.010 (5)	0.021 (3)
C3	0.078 (8)	0.044 (2)	0.072 (5)	-0.001 (4)	0.001 (4)	0.000 (2)
N1'	0.0533 (16)	0.0577 (19)	0.0374 (16)	0.000 (11)	0.000 (11)	0.0062 (14)
N2'	0.068 (2)	0.0428 (16)	0.0475 (17)	-0.007 (7)	-0.017 (6)	-0.0033 (15)
C1'	0.059 (7)	0.055 (3)	0.042 (3)	-0.002 (4)	0.000 (4)	0.012 (2)
C2'	0.077 (7)	0.062 (3)	0.077 (4)	-0.025 (5)	-0.010 (5)	0.021 (3)
C3'	0.078 (8)	0.044 (2)	0.072 (5)	-0.001 (4)	0.001 (4)	0.000 (2)
Geometric na	ramatars (Å °)					
Geometric pu	rumeters (A,)		~ .			
Cul—N4		1.963 (3)	CI—	HIA	0.	97
Cul—N3		1.984 (3)	C1—H1B		0.97	
Cul—N2		1.999 (3)	C2—	-C3	1.507 (9)	
Cul—Nl		2.001 (3)	C2—	-H2A	0.97	
S1—C4		1.644 (4)	C2—	-H2B	0.97	
S2—C5		1.639 (4)	C3—	-H3A	0.	97
N3—C4		1.134 (5)	C3—	-H3B	0.	97
N4—C5		1.141 (5)	CI'—	-C2'	l.	537 (10)
N1—C1		1.432 (7)	Cl'—	-H1'1	0.	97
N1—H11		0.86	Cl'—	-H1'2	0.	97
N1—H12		0.86	C2'—C3'		1.545 (10)	
N2—C3		1.473 (9)	C2'—	-H2'1	0.	97
N2—H21		0.86	C2'—	C2'—H2'2 0.97		97
N2—H22		0.86	C3'—	C3'—H3'1		97
C1—C2		1.499 (9)	C3'—	-H3'2	0.	97
N4—Cu1—N3	i	89.57 (16)	C2—	C1—H1B	10	09.2
N4—Cu1—N2	2	178.10 (16)	H1A-		10	07.9
N3—Cu1—N2	2	88.53 (15)	C1—	-C2—C3	11	16.4 (8)

N4—Cu1—N1	88.87 (16)	C1—C2—H2A	108.2
N3—Cu1—N1	178.44 (16)	C3—C2—H2A	108.2
N2—Cu1—N1	93.03 (14)	C1—C2—H2B	108.2
C4—N3—Cu1	161.8 (4)	C3—C2—H2B	108.2
C5—N4—Cu1	174.8 (4)	H2A—C2—H2B	107.3
N3—C4—S1	178.0 (4)	N2—C3—C2	108.6 (7)
N4—C5—S2	179.1 (4)	N2—C3—H3A	110.0
C1—N1—Cu1	129.0 (4)	С2—С3—НЗА	110.0
C1—N1—H11	105.0	N2—C3—H3B	110.0
Cu1—N1—H11	105.0	С2—С3—Н3В	110.0
C1—N1—H12	105.0	НЗА—СЗ—НЗВ	108.3
Cu1—N1—H12	105.0	C2'—C1'—H1'1	110.2
H11—N1—H12	105.9	C2'—C1'—H1'2	110.2
C3—N2—Cu1	122.4 (5)	H1'1—C1'—H1'2	108.5
C3—N2—H21	106.7	C1'—C2'—C3'	110.1 (10)
Cu1—N2—H21	106.7	C1'—C2'—H2'1	109.6
C3—N2—H22	106.7	C3'—C2'—H2'1	109.6
Cu1—N2—H22	106.7	C1'—C2'—H2'2	109.6
H21—N2—H22	106.6	C3'—C2'—H2'2	109.6
N1—C1—C2	112.1 (6)	H2'1—C2'—H2'2	108.2
N1—C1—H1A	109.2	C2'—C3'—H3'1	111.1
C2—C1—H1A	109.2	C2'—C3'—H3'2	111.1
N1—C1—H1B	109.2	H3'1—C3'—H3'2	109.1
N4—Cu1—N3—C4	0	N1—Cu1—N2—C3	-10.6 (7)
N2—Cu1—N3—C4	180	Cu1—N1—C1—C2	-13.6 (13)
N4—Cu1—N1—C1	172.9 (7)	N1—C1—C2—C3	58.3 (14)
N2—Cu1—N1—C1	-7.1 (7)	Cu1—N2—C3—C2	46.8 (12)
N3—Cu1—N2—C3	169.4 (7)	C1—C2—C3—N2	-76.4 (13)

